High operations and maintenance costs for wind turbines reduce their overall cost effectiveness. One of the biggest drivers of maintenance cost is unscheduled maintenance due to unexpected failures. Continuous monitoring of wind turbine health using automated failure detection algorithms can improve turbine reliability and reduce maintenance costs by detecting failures before they reach a catastrophic stage and by eliminating unnecessary scheduled maintenance.
A SCADA-data based condition monitoring system uses data already collected at the wind turbine controller. It is a cost-effective way to monitor wind turbines for early warning of failures and performance issues. In this paper, we describe our exploration of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.
We used a number of measurements to develop anomaly detection algorithms and investigated classification techniques using clustering algorithms and principal components analysis for capturing fault signatures. Anomalous signatures due to a reported gearbox failure are identified from a set of original measurements including rotor speeds and produced power...(Read more...)